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BACKGROUND

CONSULTANTS TO AIRBAG INDUSTRY
MODELING WORK

- developed general-purpose gas
generator models |

-  validated performance of numerous

~inflators

- used in design of new inflators

EXPERIMENTAL WORK

cold-flow test apparatus
combustion test apparatus
ignition test apparatus
design of experiments (DOE)

ADVANCED CONCEPTS

- next-generation inflator designs
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AIRBAG COMPONENTS

e CRASH SENSORS AND COMPUTER LOGIC

* BAG HOLDER AND EXTERIOR PADDING

e NYLON AIRBAG ASSEMBLY

92



ENGINEERING CHALLENGES

IGNITOR RELIABILITY (output history, is it
repeatable ?)

TIMING OF EVENTS (pressure-time profiles)

PRODUCT CHEMICAL COMPOSITION
- tank gas
-  tank particulates
- inflator slag (multi-phase mixture)

AMBIENT OPERATING ENVIRONMENT
- temperature
- pressure

AIRBAG DEPLOYMENT
- dynamics of bag filling
- thermal and mechanical response of bag
as it opens

PROPELLANT LIFE (>15 years)
PROPELLANT DISPOSAL
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GOALS AND OBJECTIVES

e DEVELOP A MODEL THAT DESCRIBES THE
THERMOCHEMICAL EVENTS OCCURRING
IN A GAS GENERATOR

* VALIDATE MODEL WITH EXPERIMENTS

e STUDY THE INFLUENCE OF MATERIAL
PROPERTIES AND DESIGN PARAMETERS
ON PERFORMANCE OF GAS GENERATOR

maximum inflator pressure, temperature
maximum tank pressure, temperature
tank impulse |

pressure-time profiles

temperature-time profiles

tank gas composition

e COMPUTER PROGRAM FOR DESIGN OF
NEW GAS GENERATORS
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PHYSICAL MODEL
| OF
GAS GENERATOR AND DISCHARGE TANK
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GAS-ASSISTED PYROTECHNIC INFLATOR
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GAS GENERATOR
PERFORMANCE PARAMETERS
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COMPUTER SIMULATION

KEY FEATURES INCLUDED IN MODEL

ignition time delay (flame spreading)
tracks individual species with time (g, s, I)
grain geometry (form function)

nozzle discharge flow rates

filter collection process and gas flow
restriction

MODEL PREDICTING

Pu(t), Tu(t), Xu(t)

heat exchange rates
hardware temperatures
propellant properties per time
flow properties at exit nozzle

EXPERIMENTAL VALIDATION DATA

ignition delay time
mass of collected particles in filter
Pa(t), Ta(t), Xyu(t = o), Pyy(t = )

NUMERICAL PROCEDURE

large system of ODE's (dTi/dt, dmy/dt, etc.)
solved using DVODE
CPU time is 0.1 - 1 minute on HP-735
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MODEL DESCRIPTION

BASED ON FUNDAMANTAL CONSERVATION
LAWS (MASS, ENERGY)

TWO MAJOR SUBSYSTEMS CONSIDERED:

- gas generator assembly
- discharge tank

GAS GENERATOR ASSEMBLY INCLUDES:

body (metal hardware)

propellant grains

ignitor assembly

filter screen

thin metal foil for environmental seal and
burst strength

DISCHARGE TANK INCLUDES:

-  tank walls (heat loss)
-  mass discharged from inflator

DIFFERENT MODES OF HEAT TRANSFER
ARE CONSIDERED
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MODEL ASSUMPTIONS

FILTER DOES NOT COLLECT GAS SPECIES

FILTER DOES COLLECT SOLID AND LIQUID
PRODUCTS OF COMBUSTION

-  collection efficiency depends on filter
design (mass, fiber size, etc.)

GAS MIXTURE IS:

multiple species

Cp(T)

well-mixed, perfect gas
can be chemically reactive

CONDENSED SPECIES ARE:

- multiple species
- Cp(T) ,
- not compressible
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COMPUTATIONAL MODEL
OF
GAS GENERATOR AND DISCHARGE TANK
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INFLATOR MODEL FLOW CHART
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THERMODYNAMIC
DATA BASE

Treats multiple chemical species in propellant
grains and products of reaction

Gaseous as well as condensed-phase species
are possible

Uses NASA/CHEMKIN thermodynamic data
base for Cpy(T)
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GAS-PHASE CHEMISTRY

<<<<<<< GAS-PHASE REACTIONS >>>>>>>

Rxn number Symbolic representation

——r G . - ——— e s e S W A - - — - A S W e N et o  — — — - O S - T T T e W= o e e mas

. C+02<=>C0+0
C+OH<=>CO+H
HCO+0OH<=>H20+CO
HCO+M<=>H+CO+M
HCO+H<=>CO+H2
HCO+0<=>C0O+0H
HCO+0<=>CO2+H

. HCO+02<=>H02+CO
. CO+0+M<=>C02+M
10. CO+0H<=>CO2+H
11. CO+02<=>C02+0

WoOo~JaoUikxwiE

12. HOZ2+CO<=>C0O2+0H
13. H2+02<=>20H
14. O+0OH<=>02+H

15. O+H2<=>0H+H
16. H+02+M<=>H02+M
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CHEMKIN-II: FLOW CHART
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CONSTITUTIVE RELATIONS

« Burn-rate Ar‘— L /\ H
drL é;:_ i

5t = b(T) {a P"} //‘

- Flow at the exit ports is choked-flow

dmex T Aex Pi $ilter co»fo.\rnwv-’""‘“)

where T is a function of the specific heat ratio
of the exit gas, < *r

1+ 1 G \
T=Y[Yi 1]2(7—1)

time

- Instantaneous surface area (form function)

AL(t) = function of grain geometry
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PARTICLE FILTER

FILTER FLOW LOSS
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RESULTS - COMPUTER SIMULATION
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RESULTS - COMPUTER SIMULATION
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RESULTS - COMPUTER SIMULATION
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RESULTS - SENSITIVITY STUDY
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RESULTS - SENSITIVITY STUDY
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NECESSARY FOR MEANINGFUL INFLATOR
SIMULATION PROGRAM

DESCRIPTION OF PROPELLANT AND PRODUCTS
CHEMICAL COMPOSITION

TEMPERATURE-DEPENDENT SPECIFIC HEAT
FUNCTIONS FOR ALL POSSIBLE SPECIES

PRECISE SOLID PHASE PROPERTIES (V, DENSITY)
SURFACE REGRESSION RATE ( = F(P,T) )

SURFACE/VOLUME RATIO OF PROPELLANT DURING
BURN

IGNITION SEQUENCE OF THE PROPELLANT
(COATING, SQUIB SIZE, TEMPERATURE, ETC.)

FRACTURE OF GRAINS DURING RAPID
PRESSURIZATION

SOLID-PHASE THERMAL PROPERTIES (MODEL SLAG
FORMATION)

NOzZZLE OPENING PROCESS (INCLUDED MULTIPLE
NOZZLE SIZES TO AVOID SADDLING EFFECT)

HEAT LOSS TO SCREENS
DYNAMIC MASS-FLOW DISCHARGE COEFFICIENTS

DEVELOPMENT OF EXPERIMENTAL PLAN IN PARALLEL
WITH MODEL DEVELOPMENT
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EXPERIMENTAL REQUIREMENTS

DESCRIPTION OF PROPELLANT
-  chemical composition

-  grain geometry
-  burn-rate function

ANALYSIS OF SPECIES REMAINING IN THE
INFLATOR AFTER FIRING

DYNAMIC PRESSURE MEASUREMEN‘TS IN:

- inflator body
- discharge tank

AFTER-FIRING INSPECTION OF
HARDWARE FOR CONDENSED PARTICLES

INDEPENDENT STUDIES OF THE FILTER
COLLECTION EFFICIENCY

INDEPENDENT STUDIES OF THE
PROPELLANT IGNITION SEQUENCE
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PROPELLANT CONCERNS

PRODUCT CHEMICAL COMPOSITION
- tank gas
- tank particulates
- inflator slag (multi-phase mixture)

LIFE (>15 years)
DISPOSAL
PROPELLANT OUTPUT

- hot vs. cold firing
- squib can fracture propellant grains

LABORATORY COMBUSTION STUDIES
SHOULD REPLICATE ACTUAL GAS
GENERATOR OPERATING ENVIRONMENT

high confinement (solids loading)
pressure variations (14.7 - 4,000 psi)
possible slag build-up

flame spreading
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COMBUSTION TEST APPARATUS
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IGNITION CONCERNS

ACTION TIME

- hot vs. cold firing |

- uniform performance of "similar" squibs

- some "good" gas-generating
propellants require accelerant coatings

IGNITOR OUTPUT

- hot vs. cold firing

- uniformity in performance of "similar"
squibs

-  can fracture propellant grains

IGNITOR LIFE

- uniform performance after storage

INDEPENDENT STUDIES OF IGNITOR AND
PROPEL.LANT IGNITION SEQUENCE ARE
NECESSARY UNDER ALL OPERATING
CONDITIONS
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IGNITION TEST APPARATUS

0ct

Cap A Thermocouple port Gas relief port
L“ 91 Pt iy 79
x's 18 '«—— 31.6 =]
] [HI g
4 iy N Eiwhdylalbiele
. g RR R I
15 5.5 Y i il B
ﬂ':l: ------ =

SOSSHRESNENSE

W

A

Pressure port ‘ Pressure port

195 ' P -l — e~




CONCLUSIONS

COMPREHENSIVE GAS GENERATOR MODEL
WAS DEVELOPED

MODEL HAS BEEN APPLIED TO

- conventional pyrotechnic inflators
-  hybrid inflators

AGREEMENT WITH DATA IS EXCELLENT

MODEL IS A USEFUL TOOL FOR DESIGN AND
DEVELOPMENT OF:

new inflators (material properties, size, etc.)
new pyrotechnic compositions

propellant grain modifications

ignitors

new filter designs

EXPERIENCE SHOWS THAT A RELIABLE
EXPERIMENTAL DATABASE IS ESSENTIAL

WE RECOMMEND THAT SOLID PROPELLANT
FIRE EXTINGUISHMENT PROGRAM FOLLOW
SAME METHODOLOGY
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ALTERNATIVE DESIGNS

Propellant

Cooling Filter
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a.) Standard Scheme

Granular
Propellant
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b.) Self-cooling Scheme
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